PROPERTIES OF CERTAIN PARTIAL DYNAMIC INTEGRODIFFERENTIAL EQUATIONS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Self-similarity for Solutions of Partial Integrodifferential Equations

The question is studied whether weak solutions of linear partial integrodifferential equations approach a constant spatial profile after rescaling, as time goes to infinity. The possible limits and corresponding scaling functions are identified and are shown to actually occur. The limiting equations are fractional diffusion equations which are known to have self-similar fundamental solutions. F...

متن کامل

Impulsive integrodifferential Equations and Measure of noncompactness

This paper is concerned with the existence of mild solutions for impulsive integro-differential equations with nonlocal conditions. We apply the technique measure of noncompactness in the space of piecewise continuous functions and by using Darbo-Sadovskii's fixed point theorem, we prove reasults about impulsive integro-differential equations for convex-power condensing operators.

متن کامل

Integrodifferential Equations with Analytic Semigroups

In this paper we study a class of integrodifferential equations considered in an arbitrary Banach space. Using the theory of analytic semigroups we establish the existence, uniqueness, regularity and continuation of solutions to these integrodifferential equations.

متن کامل

Bounds of Solutions of Integrodifferential Equations

and Applied Analysis 3 Define a function m t by m t v t ∫ t 0 g s v s ds v t ∫ t 0 g s ds, 2.5 then m 0 v 0 u0, v t ≤ m t , v′ t ≤ f t m t , 2.6 m′ t 2g t v t v′ t ( 1 ∫ t 0 g s ds ) ≤ m t [ 2g t f t ( 1 ∫ t 0 g s ds )] . 2.7 Integrating 2.7 from 0 to t, we have m t ≤ u0 exp (∫ t 0 ( 2g s f s ( 1 ∫ s 0 g σ dσ )) ds ) . 2.8 Using 2.8 in 2.6 , we obtain v′ t ≤ u0f t exp (∫ t 0 ( 2g s f s ( 1 ∫ s ...

متن کامل

Existence of Positive Solutions for Certain Partial Difference Equations

where Pm,n > 0 onN 0 , k, l ∈N0,Ni = {i, i+1, . . .} and i is an arbitrary integer. Throughout this paper, we assume that a, b, c, d are positive constants. A double sequence {Am,n} is said to be a solution of (1.1) if it satisfies (1.1) form≥m0, n≥ n0. A solution {Ai, j} of (1.1) is said to be eventually positive if Ai, j > 0 for all large i and j, and eventually negative if Ai, j < 0 for all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Differential Equations and Control Processes

سال: 2016

ISSN: 0974-3243

DOI: 10.17654/de016020055